\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx\) [180]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 124 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {5 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {3 \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \]

[Out]

3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+5/3*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+5/3*sin(d*x+c)/a/d/cos(d*x+c)^(3/2
)-sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))-3*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2847, 2827, 2716, 2720, 2719} \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac {5 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {3 \sin (c+d x)}{a d \sqrt {\cos (c+d x)}} \]

[In]

Int[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])),x]

[Out]

(3*EllipticE[(c + d*x)/2, 2])/(a*d) + (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (5*Sin[c + d*x])/(3*a*d*Cos[c +
d*x]^(3/2)) - (3*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]) - Sin[c + d*x]/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*
x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2847

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b
^2)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x]))), x] + Dist[d/(a*(b*c -
a*d)), Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Ne
Q[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))}-\frac {\int \frac {-\frac {5 a}{2}+\frac {3}{2} a \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))}-\frac {3 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{2 a}+\frac {5 \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{2 a} \\ & = \frac {5 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {3 \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))}+\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}+\frac {3 \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = \frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {5 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {3 \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.91 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.68 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (9 \left (1+e^{2 i (c+d x)}\right )+9 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {\left (10 \cos \left (\frac {1}{2} (c-d x)\right )+8 \cos \left (\frac {1}{2} (3 c+d x)\right )+4 \cos \left (\frac {1}{2} (c+3 d x)\right )+5 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+9 \cos \left (\frac {1}{2} (3 c+5 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{4 d \cos ^{\frac {3}{2}}(c+d x)}\right )}{3 a (1+\cos (c+d x))} \]

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])),x]

[Out]

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c +
 d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1
+ E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2
*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - ((10*Cos[(c - d*x)/2] + 8*Cos[(3*c + d*x)/2] + 4*Co
s[(c + 3*d*x)/2] + 5*Cos[(5*c + 3*d*x)/2] + 9*Cos[(3*c + 5*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2])/(4*d*C
os[c + d*x]^(3/2))))/(3*a*(1 + Cos[c + d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(412\) vs. \(2(166)=332\).

Time = 3.73 (sec) , antiderivative size = 413, normalized size of antiderivative = 3.33

method result size
default \(\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (10 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-18 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+44 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-11 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(413\)

[In]

int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)

[Out]

1/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a/cos(1/2*d*x+1/2*c)/sin(1/2*d*x+1/2*c)^3/(4*sin
(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(10*cos(1/2*d
*x+1/2*c)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
sin(1/2*d*x+1/2*c)^2-18*cos(1/2*d*x+1/2*c)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-36*sin(1/2*d*x+1/2*c)^6-5*cos(1/2*d*x+1/2*c)*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*cos(1/2*d*x+1/2*c)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+44*sin(1/2
*d*x+1/2*c)^4-11*sin(1/2*d*x+1/2*c)^2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 258, normalized size of antiderivative = 2.08 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=-\frac {2 \, {\left (9 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(2*(9*cos(d*x + c)^2 + 4*cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(I*sqrt(2)*cos(d*x + c)^3
+ I*sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x
+ c)^3 - I*sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*(-I*sqrt(2)*c
os(d*x + c)^3 - I*sqrt(2)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*s
in(d*x + c))) + 9*(I*sqrt(2)*cos(d*x + c)^3 + I*sqrt(2)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\int \frac {1}{\cos ^{\frac {7}{2}}{\left (c + d x \right )} + \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx}{a} \]

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)

[Out]

Integral(1/(cos(c + d*x)**(7/2) + cos(c + d*x)**(5/2)), x)/a

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))),x)

[Out]

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))), x)